10. Lagged Correlation

Lagged relationships are characteristic of many natural physical systems. Lagged correlation refers to the correlation between two time series shifted in time relative to one another. Lagged correlation is important in studying the relationship between time series for two reasons. First, one series may have a delayed response to the other series, or perhaps a delayed response to a common stimulus that affects both series. Second, the response of one series to the other series or an outside stimulus may be “smeared” in time, such that a stimulus restricted to one observation elicits a response at multiple observations. For example, because of storage in reservoirs, glaciers, etc., the volume discharge of a river in one year may depend on precipitation in the several preceding years. Or because of changes in crown density and photosynthate storage, the width of a tree-ring in one year may depend on climate of several preceding years. The simple correlation coefficient between the two series properly aligned in time is inadequate to characterize the relationship in such situations. Useful functions we will examine as alternative to the simple correlation coefficient are the cross-correlation function and the impulse response function. The cross-correlation function is the correlation between the series shifted against one another as a function of number of observations of the offset. If the individual series are autocorrelated, the estimated cross-correlation function may be distorted and misleading as a measure of the lagged relationship. We will look at two approaches to clarifying the pattern of cross-correlations. One is to remove the persistence from, or prewhiten, the two series before cross-correlation estimation. In this approach, the two series are essentially regarded on an “equal footing”. An alternative is the “systems” approach, in which one series is viewed as input to and the other series as output from a dynamic linear system. The lagged response is estimated through the “impulse response function”, which is the response of the output at current and future times to a hypothetical “pulse” of input restricted to the current time. Estimation of the impulse response function involves application of the same filter to the input and output series, followed by cross-correlation of the filtered series. The filter is designed such that it whitens the input series.

10.1 Cross-Correlation Function

The cross-correlation function (ccf) of two time series is the product-moment correlation as a function of lag, or time-offset, between the series. It is helpful to begin defining the ccf with a definition of the cross-covariance function (ccvf). Consider N pairs of observations on two time series, u_t and y_t. Following Chatfield (2004, p. 158), the sample ccvf is given by

\[
\begin{align*}
\text{cov}_{uy}(k) &= \frac{1}{N} \sum_{t=1}^{N-k} (u_t - \bar{u})(y_{t+k} - \bar{y}) \\
&= \frac{1}{N} \sum_{t=1}^{N-k} (u_t - \bar{u})(y_{t+k} - \bar{y}) \\
&= \frac{1}{N} \sum_{t=k+1}^{N} (u_t - \bar{u})(y_{t-k} - \bar{y}) \\
&= \frac{1}{N} \sum_{t=k+1}^{N} (u_t - \bar{u})(y_{t-k} - \bar{y}) \\
&= \frac{1}{N} \sum_{t=k+1}^{N} (u_t - \bar{u})(y_{t-k} - \bar{y}) \\
&= \frac{1}{N} \sum_{t=k+1}^{N} (u_t - \bar{u})(y_{t-k} - \bar{y})
\end{align*}
\]

(1)

where N is the series length, \bar{u} and \bar{y} are the sample means, and k is the lag. The sample cross-correlation function (ccf) is the ccvf scaled by the variances of the two series:

\[
\text{cc}_{uy}(k) = \frac{\text{cov}_{uy}(k)}{\text{var}(u) \cdot \text{var}(y)}
\]

(2)

Where $\text{cc}_{uy}(0)$ and $\text{cc}_{yy}(0)$ are the sample variances of u_t and y_t.

Notes_10, GEOS 585A, Spring 2015
In a previous chapter we studied the autocovariance function (acvf) and autocorrelation function (acf), and learned that these are *symmetrical* functions (value at lag k equals value at lag $-k$). In contrast, the ccvf and ccf are asymmetrical functions. The asymmetry brings about the need for the two parts of equation (1). The cross-covariance function as described by equation (1) can be described in terms of “lead” and “lag” relationships. The first part of the equation applies to y, shifted forward relative to u. With this direction of shift, u is said to “lead” y. This is equivalent to saying that y “lags” u. The second part of equation (1) describes the reverse situation, and summarizes lagged correlations when y “leads” u (u “lags” y).

Consider the two time series of annual tree-ring index plotted in Figure 1. The plots suggest the series are positively correlated, but the year-to-year variations are too noisy to visually judge whether one series tends to lead or lag the other. Both series, however, appear to be positively autocorrelated, as positive departures from the mean tend to follow positive departures, and negative departures tend to follow negative departures.

The autocovariance functions (acvf’s) of the two series and the cross-correlation function (ccf) between them are plotted in Figure 2. The acvf is just the autocorrelation function (acf) multiplied by the variance, and so the acvf and acf have exactly the same shape but different scaling. The acvf is symmetric, as evidenced by $\text{acvf}(k) = \text{acvf}(-k)$. The plotted acvf’s in Figure 2 are consistent with positive autocorrelation in both series, as positive acvf at some lag k would re-scale to positive autocorrelation, but the statistical significance cannot be judged from these plots. The autocovariance at lag $k = 0$ is identically the variance, such that we can see from the top plots in Figure 2 alone that the variance of u is slightly greater than the variance of y.

The ccf as plotted indicates that u and y are significantly positively correlated at lag $k = 0$. The horizontal dashed line in Figure 2 marks the upper 99% confidence level for significance of the ccf. This confidence interval relies on several simplifying assumptions and can be computed from the sample size alone. For a two-tailed test, the approximate 99%
The confidence interval \((\alpha = 0.01)\) is \(0 \pm 2.58/\sqrt{N}\), where \(N\) is the sample size. The value 2.58 is the 0.995 probability-point of the cdf of the normal distribution. This confidence interval relies on assumptions that 1) the processes generating \(u_i\) and \(v_i\) are uncorrelated, 2) the processes are not autocorrelated, 3) the populations are normally distributed, and 4) the sample size is large. Under those assumptions, the sample cross-correlations are \(\sim N(0, 1/N)\), or normally distributed with mean zero and variance \(1/N\). A ccf estimate outside the confidence interval is deemed "significant" in that the null hypothesis that the true ccf at that lag is zero must be rejected against the alternative hypothesis that the true ccf is non-zero.

The 99% confidence level for the ccf plotted in Figure 2 is a horizontal line, but that simple interval relies on the stated assumptions. The first assumption, that the processes generating \(u_i\) and \(v_i\) are uncorrelated, is central to the null hypothesis, but the assumptions are normality and absence of autocorrelation are problematic.

Non-normality can possibly be handled by transformation of the series to normality, followed by techniques applicable to normally distributed variables. Violations of the normality assumptions, and of other assumptions, can also be dealt with by Monte Carlo techniques, which do not rely on an assumed theoretical distribution of the lagged correlations. A Monte Carlo approach would consist of generating many (e.g., 10,000) simulated time series of \(u\), with the same distribution and autocorrelation properties as the observed \(u\), and using the cdf of lagged correlations of \(v\) with those simulated series to place empirical confidence intervals on the lagged correlations of observed \(u\) and \(v\). For more information on Monte Carlo methods, which are not addressed in this chapter, the reader is referred elsewhere (e.g., Martinez and Martinez 2002, p 191; Salas et al. 1980, p 97; Haan 202, p. 331).

Figure 2. Sample autocovariance and cross-correlation functions for time series plotted in Figure 1. Horizontal dashed line is 99% confidence threshold for cross-correlation function. Autocorrelation at lag \(k\) can be computed by dividing the acvf(k) by acvf(0). For example, the autocorrelation coefficient at lag 1 for series \(u\) is about 0.3/0.5 = 0.6. Horizontal dashed line in ccf plot is a 99% confidence interval.
Even if the time series u_t and v_t are assumed to come from a normal distribution, the presence of autocorrelation in either series can complicate the interpretation of computed estimates of cross-correlations. The expected standard error for the cross-correlations at various lags can be shown to depend on the autocorrelation in the individual series (Box and Jenkins 1976). Because many time series for which lagged-correlations are of interest are themselves autocorrelated, one must question whether the “significance” of the ccf at some lags as portrayed by the simplified confidence interval described above (e.g., Figure 2, bottom) is artificial and the result of ignoring the effects of autocorrelation. Modifications aimed at dealing with autocorrelation are discussed later.

The significant cross-correlations in Figure 2 extend over several lags, such that u_t is significantly correlated with $v_{t\pm n}$ shifted several lags forward and backwards. If the ccf in Figure 2 were significant at only zero and positive lags, it could be said that v_t tended to “lag” u_t. Such a pattern with input u_t and output v_t would be consistent with a “causal” system. The plotted ccf in Figure 2 is significant different from zero at negative as well as non-negative lags, and consequently is not consistent with a causal system. This is not surprising for these data, which are two tree-ring series with no physically causal relationship to imply that variations in one series should in any sense “drive” variations in the other.

The ccf at a particular lag can be regarded as a correlation coefficient between two time series, one of which just happens to be shifted some number of time units. Just as the bivariate relationship for any two variables can be examined with a scatterplot, the bivariate relationship posed by the ccf can be examined with lagged scatterplots. Such plots might indicate oddities in the data – for example, that the ccf at a particular lag is driven by one or two outlier values of the time series. Lagged scatterplots for the two time series used as an example above are plotted in
Figure 3. The plots show $y(t)$ in year t plotted against $u(t)$ in years $t, t-1, t-2, \text{ and } t-3$.

Like the ccf, the scatterplots show the strongest relationship at lag 0. Correlation at lag 0 ($r=0.57$) is by definition the value of the cross-correlation function at lag 0 (compare correlation coefficient for lag 0 in Figure 3 with lag-0 cross-correlation in Figure 2). The computed correlation coefficients (r) in Figure 3 can be compared with the threshold correlation required for significance at $\alpha = 0.01$ for a two-tailed test with null hypothesis of zero correlation. This critical level of correlation, denoted r_{99} for “99 percent significance level”, follows Haan(2002). The effective sample size is sample size adjusted for autocorrelation (Dawdy and Matalas 1964).

For example, the 99% confidence level is at $r_{99} = 0.26$ in the ccf (Figure 2), and at $r_{99} = 0.30$ in the scatterplots of Figure 3.
10.2 Prewhitening to clarify lagged relationships

As already mentioned, lagged correlations between time series can be misleading as evidence of lagged relationships and dependence, especially if the individual time series are autocorrelated. Jenkins and Watts (1968) suggest that to clarify lagged relationships the individual series first be prewhitened before estimating the ccf. In contrast to the systems approach described later, this approach to lagged relationships treats time series on an “equal footing” (Chatfield 2004, p. 155). The systems approach, on the other hand, treats one series as an input to a hypothetical system and the other series as an output.

Prewhitening in the context of estimation of the ccf is intended to deal with the complicating effects of autocorrelation on the estimated ccf and its standard deviations. Referring to the estimators of the ccvf and ccf \(e_{xy}(k) \) and \(r_{xy}(k) \), Chatfield (2004, p. 158) says:

> It can be shown that these estimators are asymptotically unbiased and consistent. However it can also be shown that estimators at neighbouring lags are themselves autocorrelated. Furthermore, it can be shown that the variances of sample cross-correlations depend on the autocorrelation functions of the two components. In general, the variances will be inflated. Thus even for moderately large values of \(N \) up to about 200, or even higher, it is possible for two series, which are actually unrelated, to give rise to apparently ‘large’ cross-correlation coefficients which are spurious, in that they arise solely from autocorrelations within the two series. Thus, of a test is required for non-zero correlation between two time series, then (at least) one of the series should first be filtered to convert it to (approximate) white noise.

Chatfield goes on to suggest the systems approach, in which one time series, regarded as “input”, is prewhitened by a time series model, the other series is filtered by the same model, and correlations between the prewhitened input and filtered output are plotted and examined. He also mentions the alternative approach of prewhitening both time series by fitting them individually to time series models, and then examining the cross-correlations between the prewhitened series. This latter approach is suggested by Jenkins and Watts (1968) and Brockwell and Davis (2002), and consists of a non-systems, or “equal-footing” approach.

10.3 “Equal-Footing” Approach

As in section 10.1, we consider two time series, \(u \) and \(y \). Each series is individually fit to a high-order autoregressive model (say, AR(10)), and each is then prewhitened by its respective model to generate the two prewhitened series \(\alpha \) and \(\beta \). The ccf is computed for these prewhitened series. Because neither is autocorrelated, we can apply the conventional non-adjusted confidence interval estimation for a correlation coefficient in evaluating the significance of the ccf at various lags. The approximate variance of the cross-correlations is \(1/N \), where \(N \) is the number of observations. An approximate 95% confidence interval for the ccf is therefore \(0 \pm 1.96/\sqrt{N} \), and an approximate 99% interval is \(0 \pm 2.58/\sqrt{N} \).

For the tree-ring example discussed previously, the ccf of the prewhitened series indicates that the series are significantly correlated at lag zero only (Figure 4). This result is quite different from the ccf on the original series (Figure 2), and suggests no lag in the relationship between the two tree-ring series. The significant ccf values at non-zero lags in Figure 2 might therefore be considered artifacts resulting from autocorrelation in the individual series.

10.4 Systems Approach -- Impulse Response Function (IRF)

As discussed above, autocorrelation in the individual time series makes direct use of the ccf to study lagged relationships problematic. Essentially, the questions asked of the ccf are 1) how strongly is one series related to another, 2) is the relationship simultaneous or distributed over
several time steps, and 3) if distributed, how many lags are involved and what is their relative importance?

The prewhitening approach described in the preceding section treated each series on an equal footing in dealing with autocorrelation. These questions can also be addressed by a systems approach in which the series are regarded as input to and output from a linear dynamic system (Figure 5). Dynamic refers to the possible dependence of the output at time \(t \) on the input signal at many previous times. For such a system, the hypothetical response to a unit pulse of input at time \(t = 0 \) is given by the impulse response function (IRF).

For the tree-ring example, the IRF gives the hypothetical response of series KERN at times \(t, t+1, t+2, \ldots \) to a pulse of anomalous (above or below mean) “input” from series KAIS at time \(t \). (Of course in a tree-ring context this is an artificial conceptualized system, and is used here only to illustrate methods. A more natural input-output system might have precipitation as input and tree-growth as output). The system ideally has the following properties:

- **time invariant**: response to an input signal does not depend on absolute time
- **linear**: output response to a linear combination of inputs is the same as the linear combination of the output responses to the individual inputs
- **causal**: output at a certain time depends on the input up to that time only

![Sample autocovariance and cross-correlation functions for time series plotted in Figure 1 after each series has been prewhitened with an AR(10) model. Remainder of caption as in Figure 2.](image)
The system sketched in Figure 5 is described by the equation

\[y(t) = \sum_{k=1}^{\infty} g(k)u(t-k) + v(t) \]

where
\[y(t) = \text{output in year } t \]
\[u(t-k) = \text{input in year } t - k \]
\[g(k) = \text{impulse repulse function at lag } k \]
\[v(t) = \text{noise term in year } t \]

The summation as written, following the notation in Ljung (1987), does not allow a contemporaneous response, or a response at time \(t \) to an input at time \(t \). This can be remedied with no loss of generality by shifting the input one time step relative to the output (re-aligning the series) so that the summation effectively starts with \(k=0 \). Realignment can also insure that for a system with nominally assigned input and output, the output response does not precede the input stimulus.

The model represented by (3) gives the output as a linear combination of past (and possibly current) input. The numbers \(\{ g(k) \} \) are called the impulse response function (IRF). Generally, the IRF is unknown, and must be estimated from the data -- the input signal

\[u(t), t = 1, \cdots, N \] \hspace{1cm} (4)

and the output signal

\[y(t), t = 1, \cdots, N \] \hspace{1cm} (5)

Figure 5. Input-output system with superposed noise. For example, input \(u(t) \) might be rainfall, output \(y(t) \) a tree-ring index, and \(v(t) \) a disturbance variable incorporating all other influences on the tree-ring index. In the example used in class, one tree-ring chronology (KAIS) is used as the nominal input, and another chronology (KERN) as the nominal output (see Figure 1).
10.5 Estimation of the IRF

The “systems” method for estimating the IRF to be described is based on reducing one of the series to white noise before computing its correlation with the other series. Unlike in the “equal footing” approach described in section 10.3, only the input series is explicitly prewhitened.

The systems method to clarifying the lagged relationships in the presence of autocorrelation amounts to passing the input and output series through a filter before computing the cross-correlation function. The filter is chosen such that it reduces the input series to white noise (removes the autocorrelation). The filtered input series is therefore called the “prewhitened” input. The output is passed through the same filter, but the filtered output will generally not be white noise because the filter has been designed specifically to prewhiten the input, not the output. The ccf between the prewhitened input and filtered output is an estimate of the IRF of the system.

The filter for this operation is a high-order (e.g., order 10) autoregressive (AR) model fit to the input series. Figure 6 illustrates estimation of the IRF by this method for the tree-ring example. Before computing the ccf, we have prewhitened the input series with a 10th order autoregressive model and filtered the output series with that same model. The 10th order AR

Figure 6. Impulse response function estimated by correlation analysis. Series for analysis same as in Figure 2. Top right is acvf of the the input prewhitened with an AR(10) model. Top left is the acvf of the output (tree-ring series) filtered with that same model. Lower plot is the ccf between prewhitened input and filtered output.
model has of course modified the input series so that its autocovariance is essentially zero through lag 10. The acvf of the output filtered by this same model is clearly affected, but has not been reduced to zero. In other words, the filtered output is not white noise.

The IRF, or the ccf between the prewhitened input and filtered output describes the lagged correlation structure disentangled from the influence of autocorrelation. The IRF in Figure 6 indicates significant response is restricted to lag 0. This result is in agreement with the results of the “equal footing” approach in section 10.3.

The 99% confidence interval for the IRF is once again (as in Figure 2) a horizontal line at \(0 \pm 2.58/\sqrt{N} \). A constant CI is deemed applicable this estimated IRF because one of the series is now approximately white (Ljung 1987).

10.6 Summary Comments

Several alternative methods of examining lagged bivariate relationships have been presented. A simple graphical approach is the lagged scatterplot, but this approach may become cumbersome when many scatterplots must be examined to cover the possibility of relationship at higher lags. Moreover, for autocorrelated series, the lagged correlations at various lags are interdependent. The cross-correlation function is a the basic tool for studying correlation as a function of lag, but the pattern of weights in the ccf of the original time series is again distorted when the individual series are autocorrelated. The autocorrelation can be dealt with by removing it prior to computation of the ccf. The “equal footing” approach involved separately prewhitening the two series. The “systems” approach involves prewhitening just one of the series and filtering the other by the same model used to prewhiten the first. The systems approach can also be modified such that least-squares regression yields estimates of the lagged response.

An example with two tree-ring chronologies from the same geographical region was used to illustrate the methods. These chronologies are highly autocorrelated, and it is apparent from the results that the autocorrelation distorts the estimated “raw” cross-correlation function sufficiently that a cross-correlation analysis on the original series is not suitable for identifying lagged relationships between the series. The “equal footing” and “systems” approaches to studying the lagged relationship agree for this example in point to a contemporaneous (no lag) relationship.

Prewhitening and filtering are potentially more important in studying relationships between time series the more autocorrelated the series. For example, in the “systems” approach, if the input series is already white noise (non-autocorrelated), an AR model fit to the input will have little effect, and the ccf of the original data will be virtually the same as the ccf and FIR (except for scaling) after filtering the data with the AR model. Likewise, if both series are white noise, the prewhitened series in the “equal footing” method will be approximately the same as the original series, and the ccf of the original data will differ negligibly from the ccf of the prewhitened data.

10.7 References

